Ethical Student Hackers

Tor & Cryptocurrency

The Legal Bit

- The skills taught in these sessions allow identification and exploitation of security vulnerabilities in systems. We strive to give you a place to practice legally, and can point you to other places to practice. These skills should not be used on systems where you do not have explicit permission from the owner of the system. It is <u>VERY</u> easy to end up in breach of relevant laws, and we can accept no responsibility for anything you do with the skills learnt here.
- If we have reason to believe that you are utilising these skills against systems where you are not authorised you will be banned from our events, and if necessary the relevant authorities will be alerted.
- Remember, if you have any doubts as to if something is legal or authorised, just don't do it until you are able to confirm you are allowed to.

Code of Conduct

- Before proceeding past this point you must read and agree to our Code of Conduct this is a requirement from the University for us to operate as a society.
- If you have any doubts or need anything clarified, please ask a member of the committee.
- Breaching the Code of Conduct = immediate ejection and further consequences.
- Code of Conduct can be found at https://shefesh.com/downloads/SESH%20Code%20of%20Conduct.pdf

Tor

What is Tor?

- Tor refers to "The Onion Router" and represents a network of volunteer-ran nodes through which you first connect to three different nodes before accessing the ordinary internet ("clearnet"), and to six different nodes before connecting to its special "dark web", consisting of .onion websites.
- Its name refers to the fact that there are layers of protection for the users, just like a peeled onion has many layers.
- Its goals are to improve user privacy and freedom of expression.

History

- Tor hasn't always been widely available to the masses.
- In fact, it was initially a project of the US Navy, developed in the mid 1990s to protect confidential communications in the country.
- Its alpha version was launched in 2002, and the first public release happened in 2003.
- In 2004, its code <u>was made public</u> under a free licence, making it open-source.

Different types of "webs"

- The concepts of "deep web" and "dark web" are usually misunderstood
- The clearnet is the ordinary internet and contains information that search engines can find
- The deep web is also part of the ordinary internet but its information is not indexed by search engines; its size is much bigger than clearnet's
- The dark web represents the websites that are accessible through Tor.

Tor nodes

- A typical Tor circuit on clearnet websites consists of three nodes: entry, middle and exit.
- The entry node can see your IP address and knows which middle node to connect to.
- The middle node knows the entry and exit nodes.
- The exit node knows the middle node and the website to connect to, and also does the connection to the website.
- Bridge nodes are hidden nodes used by people in countries where the internet is heavily regulated.
- You can choose your nodes by country in the torrc configuration file or even run your own node, but running an exit node is dangerous because you never know what websites people will access.

Tor Browser

- Tor and the Tor Browser are not actually the same thing.
- The Tor network is the collection of nodes, while the browser is the software that makes use of the nodes to access and display websites for the users.
- The Tor Browser is, in fact, a modified version of the open-source browser Mozilla Firefox, tweaked in order to achieve improved privacy and security.
- It can be found on its official website, <u>https://www.torproject.org/</u>.

Using the Tor Browser

- Using Tor and its browser is legal (unless you live in a country that banned them, which can be dangerous or raise suspicions), but participating in illegal activities when using them is not.
- The browser can be easily downloaded from the download page, <u>Tor Project | Download</u>.
- You may have noticed it does not cover your entire screen, that is done to make it harder to identify you by your screen dimensions.
- Once installed, connect to Tor and visit a clearnet website.

Using the Tor Browser

- You can then see your circuit of nodes and request a new one for a specific website.
- You can begin your browsing journey while double-checking the websites you want to visit.

Using the Tor Browser

- You will find normal websites that simply have an .onion address and some Tor-exclusive websites with various content.

Bitcoin and Tor, a perfect Team

When using Bitcoin together with Tor you are combining the best online currency with the best encryption and privacy technology available.

When you're using normal internet websites to manage your bitcoin funds you can't know who's tracing you.

Only a shared Web Wallet on Tor will provide you with maximum anonymity and privacy.

Is Tor truly secure?

- Even with everything that it offers, the truth is that Tor is not 100% secure and attacks/vulnerabilities have been found over the years.
- At the same time, apart from seeing vulnerabilities, there is no clear way for people to know how compromised the network or the browser currently is or what governments are capable of.

#	CVE ID	CWE ID	# of Exploits	Vulnerability Type(s)	Publish Date	Update Date	Score	Gained Access Level	Access	Complexity	Authentication	Conf.	Integ.	Avail.
1 0	VE-2021-38385	617			2021-08-30	2021-09-02	5.0	None	Remote	Low	Not required	None	None	Partial
Tor be	fore 0.3.5.16, 0.4.5.	10, and 0.4.6.	7 mishandles the	relationship between batc	h-signature verifica	ation and single-sig	nature verifica	ation, leading to a remo	ote assertion fa	illure, aka TROVE-	2021-007.			
2 🖸	VE-2021-34550	119		Overflow	2021-06-29	2021-09-20	5.0	None	Remote	Low	Not required	None	None	Partial
An iss	ue was discovered i	n Tor before 0	.4.6.5, aka TROV	E-2021-006. The v3 onior	service descriptor	r parsing allows out	-of-bounds m	emory access, and a c	lient crash, via	a crafted onion se	rvice descriptor			
3 <u>C</u>	VE-2021-34549	755			2021-06-29	2021-09-20	5.0	None	Remote	Low	Not required	None	None	Partial
An iss	ue was discovered i	n Tor before 0	.4.6.5, aka TROV	E-2021-005. Hashing is m	hishandled for certa	ain retrieval of circu	it data. Conse	equently. an attacker ca	an trigger the u	se of an attacker-c	hosen circuit ID to caus	e algorithm	inefficiency	1.
4 <u>C</u>	VE-2021-34548	863		Bypass	2021-06-29	2021-09-14	5.0	None	Remote	Low	Not required	None	None	Partial
An iss	ue was discovered i	n Tor before 0	.4.6.5, aka TROV	E-2021-003. An attacker o	can forge RELAY_I	END or RELAY_RE	SOLVED to b	ypass the intended ac	cess control fo	r ending a stream.				
5 <u>C</u>	VE-2021-28090				2021-03-19	2021-07-10	5.0	None	Remote	Low	Not required	None	None	Partial
Tor be	fore 0.4.5.7 allows a	a remote attacl	ker to cause Tor d	lirectory authorities to exit	with an assertion f	ailure, aka TROVE	-2021-002.							
6 <u>C</u>	VE-2021-28089	400			2021-03-19	2021-07-10	5.0	None	Remote	Low	Not required	None	None	Partial
Tor be	fore 0.4.5.7 allows a	a remote partic	ipant in the Tor di	rectory protocol to exhaus	t CPU resources of	on a target, aka TR	OVE-2021-00	1.						
7 C	VE-2020-15572	119		Overflow	2020-07-15	2021-07-21	4.3	None	Remote	Medium	Not required	None	None	Partial
Tor be	fore 0.4.3.6 has an	out-of-bounds	memory access t	hat allows a remote denia	I-of-service (crash)	attack against Tor	instances bui	ilt to use Mozilla Netwo	ork Security Se	rvices (NSS), aka	ROVE-2020-001.			
8 <u>C</u>	VE-2020-10593	401		DoS	2020-03-23	2020-03-25	5.0	None	Remote	Low	Not required	None	None	Partial
Tor be be neg	fore 0.3.5.10, 0.4.x gotiated twice on the	before 0.4.1.9, e same circuit.	, and 0.4.2.x befo	re 0.4.2.7 allows remote a	ttackers to cause a	a Denial of Service	(memory leak	:), aka TROVE-2020-01	04. This occurs	s in circpad_setup_	machine_on_circ beca	use a circuit	-padding m	achine can
9 <u>C</u>	VE-2020-10592			DoS	2020-03-23	2022-01-01	7.8	None	Remote	Low	Not required	None	None	Complete
Tor be	fore 0.3.5.10, 0.4.x	before 0.4.1.9,	and 0.4.2.x befo	re 0.4.2.7 allows remote a	ttackers to cause a	a Denial of Service	(CPU consun	nption), aka TROVE-20	020-002.					
10 <u>C</u>	VE-2020-8516				2020-02-02	2022-04-18	5.0	None	Remote	Low	Not required	Partial	None	None
** DIS The ne	PUTED ** The daer etwork team of Tor c	non in Tor thro laims this is a	ugh 0.4.1.8 and 0 n intended behavi	0.4.2.x through 0.4.2.6 doe or and not a vulnerability.	es not verify that a	rendezvous node is	s known befor	e attempting to connec	t to it, which n	iight make it easier	for remote attackers to	discover ci	rcuit inform	ation. NOTE:
11 <u>C</u>	VE-2019-8955	770		DoS	2019-02-21	2020-08-24	5.0	None	Remote	Low	Not required	None	None	Partial
In Tor	before 0.3.3.12, 0.3	.4.x before 0.3	.4.11, 0.3.5.x bef	ore 0.3.5.8, and 0.4.x befo	ore 0.4.0.2-alpha, r	emote denial of ser	vice against 1	for clients and relays c	an occur via m	emory exhaustion	n the KIST cell schedul	er.		
12 <u>C</u>	VE-2018-0491	416		DoS	2018-03-05	2019-03-26	5.0	None	Remote	Low	Not required	None	None	Partial
A use-	after-free issue was	discovered in	Tor 0.3.2.x befor	e 0.3.2.10. It allows remot	e attackers to caus	se a denial of servio	ce (relay crash	n) because the KIST im	plementation	allows a channel to	be added more than o	nce in the p	ending list.	
13 <u>C</u>	VE-2018-0490	476		DoS	2018-03-05	2019-04-30	5.0	None	Remote	Low	Not required	None	None	Partial
An iss	ue was discovered i	n Tor before 0	.2.9.15, 0.3.1.x be	efore 0.3.1.10, and 0.3.2.x	before 0.3.2.10. T	he directory-author	ity protocol-lis	st subprotocol impleme	ntation allows	remote attackers to	cause a denial of serv	ice (NULL p	ointer dere	ference and

lirectory-authority crash) via a misformatted relay descriptor that is mishandled during voting

Tor & Cryptocurrencies

- Tor and cryptocurrencies can be related to each other because you can make payments go through the Tor network for added layers of security and privacy.

TOR (TOR)

Anonymous cryptocurrency based on Tor browser. Safe, Open source, Community run and maintained.

Cryptocurrency

Cryptocurrency

A digital currency using cryptography to secure transactions

Bitcoin - Background

Proposed by Satoshi Nakamoto in 2008

(Fake name, 1 person vs group of people, nationality...all unknown)

- Digital coins being transferred to users through electronic signatures
- Transactions added to blockchain for verification
- Removes requirement for financial authority (bank etc.)

Read Bitcoin whitepaper

<u>https://www.ussc.gov/sites/default/files/pdf/training/annual-national-training-seminar/2018/Emerging_T</u> <u>ech_Bitcoin_Crypto.pdf</u>

Bitcoin - Beginner Terms

- Cryptographic public key Key assigned to recipient. Publicly available to everyone want to send the recipient an encrypted message
- Cryptographic private key Key assigned to recipient. Private to recipient only and used for decrypted a received message
- Cryptographic hash Created by a hash function. A hash function maps an input to a distinct output of fixed length. Irreversible

- Address Hash of a public key. Attributed to a cryptocurrency user in control of the private key. Bitcoins registered here
- Wallet Store of private and public key pairs
- Block Group of new accepted transactions
- Blockchain Distributed and public ledger of all Bitcoin transactions

Bitcoin - Transaction

https://www.ussc.gov/sites/default/files/pdf/training/annual-national-training-seminar/2018/Emerging_Tech_Bitcoin_Crypto.pdf

Blockchain

https://developer.bitcoin.org/devguide/block_chain.html

Mining Bitcoin

Create a new block on the blockchain -> Create new Bitcoins

Done through computationally complex operation

- Find a value when hashed contains a minimum number of leading 0s and is also below a set target
- Nonce = Number of minimum required leading 0s

Block difficulty is adjusted every 2,016 blocks

Block reward is halved every 210,000 blocks

Block owners will receive Bitcoin transaction fees for any transactions on the block

Using Bitcoin

1. RESEARCH A LOT

- 2. Choose a wallet Hardware vs software, company, legal restrictions in your country...
- 3. Get some Bitcoin In return for goods/services, buy from an exchange
- 4. Spend

Recommended platforms to get started:

- Exchanges Coinbase, eToro, crypto.com
- Wallets Many exchanges also offer wallet services, Exodus
- Viewing the blockchain blockchain.com/explorer

Challenges

1. When was the ETH block 14648855 mined?

2. What was the reward for mining this block?

3. What was the total of the transaction fees for this block?

4. What is the current value of this Bitcoin address bc1q87shjz3tr9u3dty5dcu334zm78c8c4c pufgask?

5. Which address sent the 0.00867699 BTC to this Bitcoin address?

Challenges

1. When was the ETH block 14648855 mined?

April 24, 2022 at 6:48 PM GMT+1

2. What was the reward for mining this block?

Approx. \$6,703.35 USD

3. What was the total of the transaction fees for this block?

Approx. \$898.87 USD

4. What is the current value of this Bitcoin address bc1q87shjz3tr9u3dty5dcu334zm78c8c4c pufgask?

Approx. \$1,480.16 USD

5. Which address sent the 0.00867699 BTC to this Bitcoin address?

bc1qt7jt8gql3tcljh2trdusjgdt4l66re9x8edt 2x

Upcoming Sessions

What's up next? www.shefesh.com/sessions Red Teamer's Viewpoint - 2nd of May

Blue Teamer's Viewpoint - 9th of May

Any Questions?

www.shefesh.com Thanks for coming!

